If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2-76b-1440=0
a = 1; b = -76; c = -1440;
Δ = b2-4ac
Δ = -762-4·1·(-1440)
Δ = 11536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11536}=\sqrt{16*721}=\sqrt{16}*\sqrt{721}=4\sqrt{721}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-76)-4\sqrt{721}}{2*1}=\frac{76-4\sqrt{721}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-76)+4\sqrt{721}}{2*1}=\frac{76+4\sqrt{721}}{2} $
| 0.30x+x=169 | | x-0.10x=45 | | X-4x=48 | | 33=11z | | 40=r-8 | | 1/2x^2-4x-6=0 | | k^2-13k+52=0 | | 6b/b=5/3 | | 2b+4/b=5/3 | | 1=x*1.12^x | | 3n-2.4=18 | | 3n-4.3=107 | | 5x+38=8x+151 | | 6n+6=-36 | | 4x-2+3x+24=180 | | 4a-6+4=46 | | 3x^2+9x-20=0 | | 5+1.5(x+4)=3.5x-3 | | 9(u-1)=9 | | 9(u-1)=7 | | 8a+20=2a | | 8a-20=2a | | 50000/25x=0 | | (0.4940+0.9446+0.9206+0.9814+0.9644+0.9435+0.9882+0.9443+0.9446+x)/10=0.9 | | 9x-(-3)=66 | | (0.4940+0.9814+0.9644+0.9435+0.9882+0.9443+0.9446+3x)/10=0.9 | | (0.4940+0.9814+0.9644+0.9435+0.9443+0.9446+4x)/10=0.9 | | (0.4940+0.9814+0.9644+7x)/10=0.9 | | (0.4940+0.9814+0.9644+7x)=0.9 | | (0.4940+9x)/10=0.9 | | 9^(y)=729 | | 9^y=729 |